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Abstract. In [10], A. Jain et al. introduced the notion of quasi-
deterministic pushdown automata (QDPDA) of order “n′′ as a gener-
alization of already known deterministic pushdown automata (DPDA).
The authors also introduced there a new family of language viz. α-
language of order n as a subclass of context-free language and have
shown that given an α-language of order n, there exists an equivalent
QDPDA of the same order that accepts exactly the given α-language
of order n. In continuation of that work, in this paper, we show that
given the language of a QDPDA of order n, there exists an equivalent
α-language of order “n′′.
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1. Introduction

We know that the nondeterministic pushdown automata (NPDA) is

the machine counterpart of context-free languages while deterministic push-

down automata (DPDA) can be associated with a subset of context-free

languages, viz. deterministic context-free languages.

Motivated by the idea to generalize DPDA, the authors in [10] intro-

duced the notion of “quasi-deterministic pushdown automata (QDPDA)”

of order n that behaves like DPDA for n = 1. The authors also introduced

the notion of α-grammar and α-language of order n as a subclass of context-

free grammar and context-free language respectively and have shown that
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given an α-language of order n, there exists an equivalent QDPDA of the

same order that accepts exactly the given α-language of order n.

In this paper, we construct an α-language of order n from the language

of a given QDPDA of order n. The order of the constructed α-language

initially depends on both the number of states as well as the order “n” of the

QDPDA. But after removing useless productions and useless variables in

the newly constructed α-grammar, we get a minimal equivalent α-grammar

that generates α-language of order n.

2. Preliminaries

We first informally define quasi-deterministic pushdown automata

(QDPDA) of order n as follows:

Definition 2.1 [10]. A “quasi-deterministic pushdown automata(QDPDA)

of order n(n ≥ 1)” is a PDA that can make atmost “n” transitions corre-

sponding to a given input symbol (real or virtual input λ) and stack top

symbol from a given state with the condition that when a λ-move is possi-

ble from a give state for some stack top symbol, then no input consuming

alternative is possible for the same state and stack top symbol configura-

tion.

We now formally define a “quasi-deterministic pushdown automata

(QDPDA) of order n” as follows:

Definition 2.2 [10]. A “quasi-deterministic pushdown automata(QDPDA)

of order n” is defined by the sep-tuple

M(n) = (Q,Σ,Γ, δ, q0, Z0, F ),

where

1. Q is a finite state of internal states of the control unit,
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2. Σ is the input alphabet.

3. Γ is a finite set of symbols called the stack alphabet,

4. δ : Q× (Σ ∪ {λ})× Γ→ finite subset of Q× Γ∗ of order at most n is

the transition function subject to the restriction that for every q ∈ Q

and B ∈ Γ, if δ(q, λ,B) is nonempty, then δ(q, a,B) must be empty

for every a ∈ Σ.

5. q0 ∈ Q is the initial state of the control unit,

6. Z0 ∈ Γ is the stack start symbol,

7. F ⊆ Q is the set of final states.

Observations [10].

(i) QDPDA (1) ⊆ QDPDA(2) ⊆ QDPDA(3) ⊆ · · · · · · .

(ii) QDPDA (1) = DPDA.

Theorem 2.3 [10]. Every QDPDA of order n is equivalent to a QDPDA

M(n) = (Q,Σ,Γ, δ, q0, Z0, F ) of order n such that if

δ(q, a,A) = (r, γ), then |γ| ≤ 2, γ ∈ V ∗, a ∈ Σ, A ∈ Γ.

Remark 2.4 [10]. Theorem 2.3 assumes that a QDPDA will never push

more than two stack symbols per move. The single move of a QDPDA

either increases or decreases the stack length by a single symbol or keeps

the stack length intact.

Definition 2.5 [10]. A context-free grammar G = (V, T, S, P ) is said to

be a “α-grammar of order “n” if all production in P are of the form

A→ ax
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where a ∈ T ∪ {λ}, x ∈ V ∗ and any pair (A, a) occurs atmost n times in P

with the restriction that if the pair (A, λ) occurs in the production, then

no pair of the form (A, b) where b ∈ T occurs in the production rule. We

denote the α-grammar G of order n by Gα(n).

Clearly,

Gα(1) ⊆ Gα(2) ⊆ Gα(3) ⊆ · · · · · ·

Definition 2.6 [10]. The language generated by an α-grammar G of order

n is defined as the “α-languages of order n” and is denoted as αG(n). In

other words, if G = (V, T, S, P ) is an α-grammar of order n then

αG(n) = {w | w ∈ T ∗ and S ⇒∗G w}.

3. Construction of α-language from the lan-
guage of a QDPDA of order n

In this section, we prove the main algorithmic result pertaining to the

construction of α-language (or α-grammar) from the language of a QDPDA

of order n. The result is further illustrated with the help of an example.

Theorem 3.1. If L is L(M(n)) for some QDPDAM(n) = (Q,Σ,Γ, δ, q0, Z0,

φ) of order n, then L is an α-language of order n.

Proof. The Construction of the associated α-grammar is based on the fact

that contents of the stack are reflected in the variable part of the sentential

form while the processed input is the terminal prefix of the sentential form.

Without any loss of generality, we may assume that

(1) The QDPDA M(n) accepts an input string iff the stack is empty after

processing the string.

(2) With a ∈ Σ ∪ {λ} and A ∈ Γ, all transitions must have the form

δ(q, a, A) = {(q1, γ1), (q2, γ2), · · · , (qk, γk)},
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where 1 ≤ k ≤ n and γj ∈ Γ∗ with |γj | ≤ 2 for all 1 ≤ j ≤ k. That is, each

move either increases or decreases the stack length by a single symbol or

keeps the stack length intact.

Now, let G = (V,Σ, P, S) be an α-grammar where

V= set of objects of the form [q, A, p], q, p ∈ Q and A ∈ Γ plus the new

symbol S;

P is the set of productions given by

(i) S → [q0, Z0, q] for all q ∈ Q,

(ii) If δ(q, a, A) contains (q1, λ), then the production rule is

[q, A, q1]→ a;

If δ(q, a,A) contains (q1, B1), then the production rule is

[q, A, q2]→ a(q1, B1, q2);

If δ(q, a,A) contains [q1, B1B2], then the producion rule is

[q, A, q3]→ a[q1, B1, q2][q2, B2, q3];B1, B2 ∈ Γ,

where q2, q3 assume all possible values in Q.

Clealry, G is an α-grammar of order t ≤ |Q|2n. But after removing

the useless variables and useless productions, we get the minimal equivalent

α-grammar of order exactly equal to n.

Note that the above production rules are defined so that

[q, A, p]⇒∗G w for w ∈ Σ∗ iff w causes

M(n) to erase A from its stack by some sequence of moves begining in

state q and ending in state p. There might be some states r that can not

be reached from q while erasing A. In that case, the resulting variables
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[q, A, r] are useless symbols and do not affect the language generated by

the α-grammar. We shall remove such type of useless variables during

minimization of the newly constructed α-grammar G.

Further, the variables that appear in any step of a leftmost derivation

in G correspond to the symbols on the stack of M(n) at a time when M(n)

has seen as much of the input as the grammar has alreday generated.

Now, in order to show

L(G) = L(M(n)),

we prove by induction on the number of steps in a derivation of G or number

of moves of M(n) that

[q, A, p]⇒∗G w for w ∈ Σ∗ iff (q, w,A) `∗M (p, λ, λ). (1)

Firstly, we show by induction on i that if

(q, w,A) `iM (p, λ, λ),

then

[q, A, p]⇒∗G w.

If i = 1 then w is either λ or a single real input symbol and (p, λ) ∈

δ(q, w,A).

Thus

[q, A, p]→ w is a production of G.

Now suppose i > 1. Let w = au where u ∈ Σ∗ and

(q, au,A) `M (q1, u,B1B2 · · ·Bk)
i− 1

`M
(p, λ, λ), k = 0, 1, 2 with B0 = λ.

(2)

The string u can be written as

u = u1u2 · · ·uk,
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where uj ∈ T ∗(1 ≤ j ≤ k) has the effect of popping Bj from the stack

possibly after a long sequence of moves.

In general , Bj(1 ≤ j ≤ k, 0 ≤ k ≤ 2) reamins unchanged on the stack

while u1, u2, · · · , uj−1 is processed. Also, there exist states q2, q3, · · · , qk+1

with qk+1 = p such that for all j = 1 to k,

(qj , uj , Bj) `∗M (qj+1, λ, λ)

in fewer than i moves.

We apply induction hypothesis and get

[qj , Bj , qj+1]⇒∗G uj for 1 ≤ j ≤ k.

Recalling the first move in (2) viz.

(q, au,A) `M (q1, u,B1B2 · · ·Bk),

we know by the construction of production rules in G that

[q, A, p]⇒ a[q1, B1, q2][q2, B2, q3] · · · [qk, Bk, qk+1],

with qk+1 = p.

Thus

[q, A, p]⇒∗G au1u2 · · ·uk = w.

Conversly supoose that

[q, A, p]⇒∗G w.

We show by induction on i that

(q, w,A) `∗M (p, λ, λ).

For i = 1, w is either λ or a symbol in Σ and [q, A, p] → w must be a

production of G. Thus in this case, we have

(q, w,A) `M (p, λ, λ).
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Now assume i > 1.

Let

[q, A, p]⇒ a[q1, B1, q2][q2, B2, q3] · · · [qk, Bk, qk+1]⇒i−1 w, (3)

where 0 ≤ k ≤ 2, qk+1 = p and B0 = λ.

Then we write

w = au1u2 · · ·uk,

where uj ∈ T ∗ for all 1 ≤ j ≤ k and

[qj , Bj , qj+1]⇒∗G uj for all 1 ≤ j ≤ k,

with each derivation taking fewer than i steps.

By the induction hypothesis, we get

(qj , uj , Bj) `∗ (qj+1, λ, λ) for all 1 ≤ j ≤ k. (4)

The sequence of ID’s in (4) clearly shows

(qj , uj , BjBj+1 · · ·Bk) `∗ (qj+1, λ,Bj+1 · · ·Bk). (5)

From the first step in the derivation of w from [q, A, p] given in (3)

viz.

[q, A, p]⇒ a[q1, B1, q2][q2, B2, q3] · · · [qk, Bk, qk+1],

where qk+1 = p we know that

(q, w,A) = (q, au1u2 · · ·uk, A) ` (q1, u1u2 · · ·uk, B1B2 · · ·Bk), (6)

where 0 ≤ k ≤ 2 is a legal move of M(n).

From (5) and (6), we get

(q, w,A) `∗ (p, λ, λ).
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Finally, on substituting q = q0 and A = Z0 in (1), we obtain

[qo, Z0, p]⇒∗ w iff (q0, w, Z0) `∗ (p, λ, λ).

The above identity together with production rule (i) of G gives

S
∗
⇒
w iff [qo, w, Z0] `∗ (p, λ, λ),

for some state p ∈ Q.

Thus

w ∈ L(G)⇐⇒ w ∈ L(M(n)).

Now the required minimal α-grammar of orer n can be obtained from

the α-grammar G by removing useless variables and useless productions in

G. Hence the proof. �

Example 3.2. Consider the QDPDA M(2) of order 2 given by

M(2) = ({q0, q1, q2}, {a, b}, {X,Z0, A,B}, δ, q0, Z0, {q2}),

where

δ(q0, λ, Z0) = {(q1, XZ0)},

δ(q1, a,X) = {(q1, XA)}, (q1, λ)}

δ(q1, b, A) = {(q1, B)},

δ(q1, b, B) = {(q1, λ)},

δ(q1, λ, Z0) = {(q2, λ)}.

The language accepted by the above QDPDA M(2) is

L(M(2)) = {anb2n−2|n ≥ 1}.

We obtain the equivalent α-grammar by the algorithm discussed in

Theorem 3.1. We note that with q0 as the initial state and q2 as the final
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state, the QDPDA satisfies conditions (1) and (2) assumed in the proof of

Theorem 3.1.

We write the production rules of the α-grammar G = (V,Σ, P, S)

where

V = {[q0, X, q0], [q0, X, q1], [q0, X, q2], [q0, Z0, q0], [q0, Z0, q1],

[q0, Z0, q2], [q0, A, q0], [q0, A, q1], [q0, A, q2], [q0, B, q0],

[q0, B, q1], [q0, B, q2], [q1, X, q0], [q1, X, q1], [q1, X, q2], [q1, Z0, q0], [q1, Z0, q1],

[q1, Z0, q2], [q1, A, q0], [q1, A, q1], [q1, A, q2], [q1, B, q0],

[q1, B, q1], [q1, B, q2], [q2, X, q0], [q2, X, q1], [q2, X, q2], [q2, Z0, q0], [q2, Z0, q1],

[q2, Z0, q2], [q2, A, q0], [q2, A, q1], [q2, A, q2], [q2, B, q0],

[q2, B, q1], [q2, B, q2], S},

Σ = {a, b},

and the production rules in P are given by

S → [q0, Z0, q0]|[q0, Z0, q1]|[q0, Z0, q2];

[q0, Z0, q0] → λ[q1, X, q0][q0, Z0, q0]|λ[q1, X, q1]

[q1, Z0, q0]|λ[q1, X, q2][q2, Z0, q0];

[q0, Z0, q1] → λ[[q1, X, q0][q0, Z0, q1]|λ[q1, X, q1]

[q1, Z0, q1]||λ[q1, X, q2][q2, Z0, q1],

[q0, Z0, q2] → λ[[q1, X, q0][q0, Z0, q2]|λ[q1, X, q1]

[q1, Z0, q2]||λ[q1, X, q2][q2, Z0, q2];

[q1, X1, q0] → a[q1, X, q0][q0, A, q0]|a[q1, X, q1]

[q1, A, q0]||a[q1, X, q2][q2, A, q0];

[q1, X, q1] → a[q1, X, q0][q0, A, q1]|a[q1, X, q1]

[q1, A, q1]|a[q1, X, q2][q2, A, q1];



Construction of α-grammar 145

[q1, X, q2] → a[q1, X, q0][q0, A, q2]|a[q1, X, q1]

[q1, A, q2]|a[q1, X, q2][q2, A, q2];

[q1, X, q1] → a;

[q1, A, q0] → b[q1, B, q0];

[q1, A, q1] → b[q1, B, q1];

[q1, A, q2] → b[q1, B, q2];

[q1, B, q1] → b;

[q1, Z0, q2] → λ.

The constructed α-grammar G is of order 3.Now, we obtain the equiv-

alent minimal α-grammar G′ of order 2 by removing useless variables and

useless productions in G as follows:

A variable that does not occur on the leftside of any production must

be useless, so we eliminate the productions involving useless variables and

have the following minimal α-grammar G′:

S → [q0, Z0, q2],

[q0, Z0, q2] → λ[q1, X1, q1][q1, Z0, q2],

[q1, X, q1] → a[q1, X, q1][q1, A, q1],

[q1, X, q1] → a,

[q1, A, q1] → b[q1, B, q1],

[q1, B, q1] → b,

[q1, Z0, q2] → λ.

Renaming the variables [q0, Z0, q2] as L, [q1, X, q1] as M , [q1, Z0, q2] as

N , [q1, A, q1] as R, [q1, B, q1] as P , we write the above minimal α-grammar

G′ in a user friendly form as
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S → L,

L → MN,

M → aMR|a,

R → bP,

P → b,

N → λ.

Thus G′ = (V ′,Σ, P ′, S) is the required minimal α-grammar of order

2 where

V ′ = {S,L,M,N,R, P},

Σ = {a, b},

and production rules in P ′ are as given above. Consider the string w =

anb2n−2 for n = 1, 2, 3.

(i) For n = 1, w = a.

The corresponding derivation of w form the above α-grammar G′ is

S ⇒ L⇒MN ⇒ aN ⇒ a.

(ii) For n = 1, w = a2b2. The derivation of w is given by

S ⇒ L⇒MN ⇒ aMRN ⇒ aaRN ⇒ aabPN ⇒ aabbN ⇒ aabb.

(iii) For n = 3, w = a3b4. The derivation of w is given by

S ⇒ L

⇒ MN

⇒ aMRN

⇒ aaMRNRN

⇒ aaaRNRN
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⇒ aaabPNR

⇒ aaabbNRN

⇒ aaabbRN

⇒ aaabbbbPN

⇒ aaabbbbbN

⇒ aaabbbb.

(i) Again the string w = a is accepted by the QDPDA with successive

configurations

(q0, a, Z0) ` (q1, a,XZ0)

` (q1, λ, Z0)

` (q2, λ, λ).

(ii) The string w = aabb is accepted by the QDPDA with successive con-

figurations

(q0, aabb, Z0) ` (q1, aabb,XZ0) ` (q1, abb,XAZ0)

` (q1, bb, AZ0) ` (q1, b, BZ0) ` (q1, λ, Z0)

` (q2, λ, λ).

(iii) The string w = aaabbbb is accepted by the QDPDA with successive

configurations

(q0, a
3b4, Z0) ` (q1, a

3b4, XZ0) ` (q1, a
2b4, XAZ0)

` (q1, ab
4, XAAZ0) ` (q1, b

4, AAZ0)

` (q1, b
3, BAZ0) ` (q1, b

2, AZ0) ` (q1, b, BZ0)

` (q1, λ, Z0) ` (q2, λ, λ).



148 A. Jain et al.

6. Conclusion

In this paper, we have provided an algorithmic method to construct

an α-grammar from the language of a given QDPDA of order n. The initial

order of the constructed α-grammar is shown to depend both on the number

of states as well as the order “n” of the given QDPDA. But after removing

useless variables and uselss productions, we get the minimal equivalent α-

grammar of order exactly equal to the order of the language of the given

QDPDA.

The constructive algorithmic method is further illustrated with the

help of an example.
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